#!
#!
It differs from the Counter in that it gives the total count to each feature. It doesn't give each feature a unique, incremented number.
#It differs from the StatisticsCalculator in that it does not need an attribute to be selected for analysis.
#An optional group-by parameter allows features to be counted in groups.
#Transformer Category: Calculated Values
#Blocker Transformer: Yes
# TRANSFORMER_END #! A0_PREVIEW_IMAGE="" #! ARCGIS_COMPATIBILITY="ARCGIS_AUTO" #! ATTR_TYPE_ENCODING="SDF" #! BLOCKED_LOOPING="No" #! CATEGORY="Calculated Values" #! DESCRIPTION="<p>This transformer counts the number of features passing through, and applies that number as an attribute onto each feature.</p> <p>It differs from the Counter in that it gives the total count to each feature. It <strong>doesn't</strong> give each feature a unique, incremented number.</p> <p>It differs from the StatisticsCalculator in that it does not need an attribute to be selected for analysis.</p> <p>An optional group-by parameter allows features to be counted in groups.</p> <p><strong>Transformer Category:</strong> <a href="http://docs.safe.com/fme/2017.0/html/FME_Desktop_Documentation/FME_Transformers_HelpPane/Categories/calculated_values.htm">Calculated Values</a></p> <p><strong>Blocker Transformer:</strong> Yes</p>" #! DOC_EXTENTS="2357.8 917.509" #! DOC_TOP_LEFT="-34.2445 -945.01" #! EXPLICIT_BOOKMARK_ORDER="false" #! FME_BUILD_NUM="23275" #! FME_DOCUMENT_GUID="4113a207-0b1b-4e50-9777-de57131312c0" #! FME_DOCUMENT_PRIORGUID="" #! FME_LINKED_TRANSFORMER_VERSION="1" #! FME_NAMES_ENCODING="UTF-8" #! FME_PROCESS_COUNT="NO_PARALLELISM" #! FME_PROCESS_GROUPS_ORDERED="No" #! FME_PROCESS_GROUP_BY="" #! FME_PROCESS_PRESERVE_GROUP_ATTR="No" #! FME_SERVER_SERVICES="" #! FMX_ATTRIBUTE_PROPOGATION_MODE="AUTO" #! FMX_INSERT_MODE="Embedded Always" #! HISTORY="12-Oct-2017,Mark<space>Ireland,Initial<space>Implementation,22-Feb-2018,Mark<space>Ireland,Added<space>Group-By<space>capability,23-Mar-2020,Mark<space>Ireland,Created<space>new<space>version<space><openparen>v3<closeparen><space>for<space>FME2020.,23-Mar-2020,Mark<space>Ireland,Upgraded<space>transformers<space>for<space>performance." #! ITERATION_COUNT_ATTR="" #! LAST_SAVE_BUILD="FME(R) 2023.0.0.0 (20230411 - Build 23275 - WIN64)" #! LAST_SAVE_DATE="2023-06-19T13:09:19" #! MARKDOWN_DESCRIPTION="This transformer counts the number of features passing through, and applies that number as an attribute onto each feature. It differs from the Counter in that it gives the total count to each feature. It **doesn't** give each feature a unique, incremented number. It differs from the StatisticsCalculator in that it does not need an attribute to be selected for analysis. An optional group-by parameter allows features to be counted in groups. **Transformer Category:** [Calculated Values](http://docs.safe.com/fme/2017.0/html/FME_Desktop_Documentation/FME_Transformers_HelpPane/Categories/calculated_values.htm) **Blocker Transformer:** Yes" #! MARKDOWN_USAGE="" #! MAX_LOOP_ITERATIONS="" #! PASSWORD="" #! PYTHON_COMPATIBILITY="" #! REPLACED_BY="" #! SHOW_ANNOTATIONS="true" #! SHOW_INFO_NODES="true" #! TITLE="FeatureCounter_2" #! USAGE="" #! USE_MARKDOWN="YES" #! VIEW_POSITION="-762.508 246.877" #! WARN_INVALID_XFORM_PARAM="Yes" #! WORKSPACE_VERSION="1" #! XFORM_DEPRECATED="No" #! ZOOM_SCALE="100" #! > #!