#! #! This transformer counts the number of features passing through, and applies that number as an attribute onto each feature.

#

It differs from the Counter in that it gives the total count to each feature. It doesn't give each feature a unique, incremented number.

#

It differs from the StatisticsCalculator in that it does not need an attribute to be selected for analysis.

#

An optional group-by parameter allows features to be counted in groups.

#

Transformer Category: Calculated Values

#

Blocker Transformer: Yes

# TRANSFORMER_END #! A0_PREVIEW_IMAGE="" #! ARCGIS_COMPATIBILITY="ARCGIS_AUTO" #! ATTR_TYPE_ENCODING="SDF" #! BLOCKED_LOOPING="No" #! CATEGORY="Calculated Values" #! DESCRIPTION="<p>This transformer counts the number of features passing through, and applies that number as an attribute onto each feature.</p> <p>It differs from the Counter in that it gives the total count to each feature. It <strong>doesn't</strong> give each feature a unique, incremented number.</p> <p>It differs from the StatisticsCalculator in that it does not need an attribute to be selected for analysis.</p> <p>An optional group-by parameter allows features to be counted in groups.</p> <p><strong>Transformer Category:</strong> <a href="http://docs.safe.com/fme/2017.0/html/FME_Desktop_Documentation/FME_Transformers_HelpPane/Categories/calculated_values.htm">Calculated Values</a></p> <p><strong>Blocker Transformer:</strong> Yes</p>" #! DOC_EXTENTS="2357.8 917.509" #! DOC_TOP_LEFT="-34.2445 -945.01" #! EXPLICIT_BOOKMARK_ORDER="false" #! FME_BUILD_NUM="23275" #! FME_DOCUMENT_GUID="4113a207-0b1b-4e50-9777-de57131312c0" #! FME_DOCUMENT_PRIORGUID="" #! FME_LINKED_TRANSFORMER_VERSION="1" #! FME_NAMES_ENCODING="UTF-8" #! FME_PROCESS_COUNT="NO_PARALLELISM" #! FME_PROCESS_GROUPS_ORDERED="No" #! FME_PROCESS_GROUP_BY="" #! FME_PROCESS_PRESERVE_GROUP_ATTR="No" #! FME_SERVER_SERVICES="" #! FMX_ATTRIBUTE_PROPOGATION_MODE="AUTO" #! FMX_INSERT_MODE="Embedded Always" #! HISTORY="12-Oct-2017,Mark<space>Ireland,Initial<space>Implementation,22-Feb-2018,Mark<space>Ireland,Added<space>Group-By<space>capability,23-Mar-2020,Mark<space>Ireland,Created<space>new<space>version<space><openparen>v3<closeparen><space>for<space>FME2020.,23-Mar-2020,Mark<space>Ireland,Upgraded<space>transformers<space>for<space>performance." #! ITERATION_COUNT_ATTR="" #! LAST_SAVE_BUILD="FME(R) 2023.0.0.0 (20230411 - Build 23275 - WIN64)" #! LAST_SAVE_DATE="2023-06-19T13:09:19" #! MARKDOWN_DESCRIPTION="This transformer counts the number of features passing through, and applies that number as an attribute onto each feature. It differs from the Counter in that it gives the total count to each feature. It **doesn't** give each feature a unique, incremented number. It differs from the StatisticsCalculator in that it does not need an attribute to be selected for analysis. An optional group-by parameter allows features to be counted in groups. **Transformer Category:** [Calculated Values](http://docs.safe.com/fme/2017.0/html/FME_Desktop_Documentation/FME_Transformers_HelpPane/Categories/calculated_values.htm) **Blocker Transformer:** Yes" #! MARKDOWN_USAGE="" #! MAX_LOOP_ITERATIONS="" #! PASSWORD="" #! PYTHON_COMPATIBILITY="" #! REPLACED_BY="" #! SHOW_ANNOTATIONS="true" #! SHOW_INFO_NODES="true" #! TITLE="FeatureCounter_2" #! USAGE="" #! USE_MARKDOWN="YES" #! VIEW_POSITION="-762.508 246.877" #! WARN_INVALID_XFORM_PARAM="Yes" #! WORKSPACE_VERSION="1" #! XFORM_DEPRECATED="No" #! ZOOM_SCALE="100" #! > #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #! #!
# ============================================================================ DEFAULT_MACRO $(FeatureCounter_2_WORKSPACE_NAME)_FeatureCounterNewAttrParameter _numfeatures DEFAULT_MACRO $(FeatureCounter_2_WORKSPACE_NAME)_GROUP_BY # ============================================================================ #! START_HEADER #! END_HEADER DEFAULT_MACRO WB_CURRENT_CONTEXT DEFAULT_MACRO FeatureCounter_2_WORKSPACE_NAME "" INCLUDE [puts {MACRO WB_OLD_CONTEXT_$(FeatureCounter_2_WORKSPACE_NAME) $(WB_CURRENT_CONTEXT)}; puts {MACRO WB_CURRENT_CONTEXT $(FeatureCounter_2_WORKSPACE_NAME)}] FACTORY_DEF * TeeFactory FACTORY_NAME "$(FeatureCounter_2_WORKSPACE_NAME)_Input1687205359 Input Splitter" INPUT FEATURE_TYPE "$(FeatureCounter_2_WORKSPACE_NAME)_Input" OUTPUT FEATURE_TYPE "$(FeatureCounter_2_WORKSPACE_NAME)_Input" # ------------------------------------------------------------------------- FACTORY_DEF {*} AttrSetFactory FACTORY_NAME { $(FeatureCounter_2_WORKSPACE_NAME)_AttributeCreator_2 } COMMAND_PARM_EVALUATION SINGLE_PASS INPUT FEATURE_TYPE "$(FeatureCounter_2_WORKSPACE_NAME)_Input" MULTI_FEATURE_MODE { NO } NULL_ATTR_MODE { NO_OP } ATTRSET_CREATE_DIRECTIVES _PROPAGATE_MISSING_FDIV ATTR_ACTION { "" "FeatureCounter_tempattr" "SET_TO" "1" } OUTPUT { OUTPUT FEATURE_TYPE "$(FeatureCounter_2_WORKSPACE_NAME)_AttributeCreator_2_OUTPUT" } # ------------------------------------------------------------------------- FACTORY_DEF {*} StatisticsCalculatorFactory FACTORY_NAME $(FeatureCounter_2_WORKSPACE_NAME)_StatisticsCalculator INPUT FEATURE_TYPE "$(FeatureCounter_2_WORKSPACE_NAME)_AttributeCreator_2_OUTPUT" GROUP_BY { $($(FeatureCounter_2_WORKSPACE_NAME)_GROUP_BY) } FLUSH_WHEN_GROUPS_CHANGE No STATISTIC_SUFFIX_RENAME_MAP COUNT,FeatureCounter_tempattr_count PREPEND_ATTR_NAME No FEAT_STATS FeatureCounter_tempattr,,,COUNT,,,,,,,,, ADVANCED_MODE NO CUMULATIVE_STATS CALCULATION_MODE NUMERIC ATTRIBUTE_NAMES_AND_TYPES FeatureCounter_tempattr,varchar200 OUTPUT COMPLETE FEATURE_TYPE "$(FeatureCounter_2_WORKSPACE_NAME)_StatisticsCalculator_COMPLETE" # ------------------------------------------------------------------------- FACTORY_DEF {*} AttrSetFactory FACTORY_NAME { $(FeatureCounter_2_WORKSPACE_NAME)_AttributeCreator } COMMAND_PARM_EVALUATION SINGLE_PASS INPUT FEATURE_TYPE "$(FeatureCounter_2_WORKSPACE_NAME)_StatisticsCalculator_COMPLETE" MULTI_FEATURE_MODE { NO } NULL_ATTR_MODE { NO_OP } ATTRSET_CREATE_DIRECTIVES _PROPAGATE_MISSING_FDIV ATTR_ACTION { "" "$($(FeatureCounter_2_WORKSPACE_NAME)_FeatureCounterNewAttrParameter)" "SET_TO" "ValueFeatureCounter_tempattr_count" } OUTPUT { OUTPUT FEATURE_TYPE "$(FeatureCounter_2_WORKSPACE_NAME)_AttributeCreator_OUTPUT" } # ------------------------------------------------------------------------- FACTORY_DEF {*} TeeFactory FACTORY_NAME { $(FeatureCounter_2_WORKSPACE_NAME)_AttributeExposer } INPUT FEATURE_TYPE "$(FeatureCounter_2_WORKSPACE_NAME)_AttributeCreator_OUTPUT" OUTPUT { FEATURE_TYPE "$(FeatureCounter_2_WORKSPACE_NAME)_AttributeExposer_OUTPUT" } FACTORY_DEF * TeeFactory FACTORY_NAME "$(FeatureCounter_2_WORKSPACE_NAME)_Output1687205359 Output Collector" INPUT FEATURE_TYPE "$(FeatureCounter_2_WORKSPACE_NAME)_AttributeExposer_OUTPUT" OUTPUT FEATURE_TYPE "$(FeatureCounter_2_WORKSPACE_NAME)_Output" @RemoveAttributes(FeatureCounter_tempattr,FeatureCounter_tempattr_count) INCLUDE [puts {MACRO WB_CURRENT_CONTEXT $(WB_OLD_CONTEXT_$(FeatureCounter_2_WORKSPACE_NAME))}]